Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries
نویسندگان
چکیده
The electrochemical performance of lithium-oxygen (Li-O2) batteries can be markedly improved through designing the architecture of cathode electrodes with sufficient spaces to facilitate the diffusion of oxygen and accommodate the discharge products, and optimizing the cathode catalyst to promote the oxygen reduction reaction and oxygen evolution reaction (OER). Herein, we report the synthesis of ruthenium (Ru) nanocrystal-decorated vertically aligned graphene nanosheets (VGNS) grown on nickel (Ni) foam. As an effective binder-free cathode catalyst for Li-O2 batteries, the Ru-decorated VGNS@Ni foam can significantly reduce the charge overpotential via the effects on the OER and achieve high specific capacity, leading to an enhanced electrochemical performance. The Ru-decorated VGNS@Ni foam electrode has demonstrated low charge overpotential of ~ 0.45 V and high reversible capacity of 23 864 mAh g−1 at the current density of 200 mA g−1, which can be maintained for 50 cycles under full charge and discharge testing condition in the voltage range of 2.0–4.2 V. Furthermore, Ru nanocrystal decorated VGNS@Ni foam can be cycled for more than 200 cycles with a low overpotential of 0.23 V under the capacity curtained to be 1000 mAh g−1 at a current density of 200 mA g−1. Ru-decorated VGNS@Ni foam electrodes have also achieved excellent high rate and long cyclability performance. This superior electrochemical performance should be ascribed to the unique three-dimensional porous nanoarchitecture of the VGNS@Ni foam electrodes, which provide sufficient pores for the diffusion of oxygen and storage of the discharge product (Li2O2), and the effective catalytic effect of Ru nanocrystals on the OER, respectively. Ex situ field emission scanning electron microscopy, X-ray diffraction, Raman and Fourier transform infrared measurements revealed that Ru-decorated VGNS@Ni foam can effectively decompose the discharge product Li2O2, facilitate the OER and lead to a high round-trip efficiency. Therefore, Ru-decorated VGNS@Ni foam is a promising cathode catalyst for rechargeable Li-O2 batteries with low charge overpotential, long cycle life and high specific capacity. NPG Asia Materials (2016) 8, e286; doi:10.1038/am.2016.91; published online 8 July 2016
منابع مشابه
Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries
LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 sp...
متن کاملRuthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance
The key factor to improve the electrochemical performance of Li-O₂ batteries is to find effective cathode catalysts to promote the oxygen reduction and oxygen evolution reactions. Herein, we report the synthesis of an effective cathode catalyst of ruthenium nanocrystals supported on carbon black substrate by a surfactant assisting method. The as-prepared ruthenium nanocrystals exhibited an exce...
متن کاملBinder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries.
A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries has been synthesised by loading sulphur on to an interconnected 3-D network of few-layered graphene (FLG) via a sulphur solution infiltration method. A free-standing FLG monolithic network foam was formed as a negative of a Ni metallic foam template by CVD followed by etching away of Ni. The FL...
متن کاملVerifying the Rechargeability of Li‐CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N‐Doped Graphene
Li-CO2 batteries could skillfully combine the reduction of "greenhouse effect" with energy storage systems. However, Li-CO2 batteries still suffer from unsatisfactory electrochemical performances and their rechargeability is challenged. Here, it is reported that a composite of Ni nanoparticles highly dispersed on N-doped graphene (Ni-NG) with 3D porous structure, exhibits a superior discharge c...
متن کاملGraphene Nanosheets Based Cathodes for Lithium-Oxygen Batteries
Lithium-oxygen batteries have attracted considerable attention as a promising energy storage system. Although these batteries have many advantages, they face several critical challenges. In this work, we report the use of graphene nanosheets (GNSs), nitrogen-doped graphene nanosheets (N-GNSs), exfoliated nitrogen-doped graphene nanosheets (Ex-N-GNSs), and a blend of Ex-N-GNSs with nitrogen-dope...
متن کامل